jueves, 4 de octubre de 2012


Realizado por: Pedro Manuel Cruz Cózar

CALCULO INFINITESIMAL

SIR ISAAC NEWTON

Científico inglés (Woolsthorpe, Lincolnshire, 1642 - Londres, 1727). Hijo póstumo y prematuro, su madre preparó para él un destino de granjero; pero finalmente se convenció del talento del muchacho y le envió a la Universidad de Cambridge, en donde hubo de trabajar para pagarse los estudios. Allí Newton no destacó especialmente, pero asimiló los conocimientos y principios científicos de mediados del siglo XVII, con las innovaciones introducidas por Galileo, Bacon, Descartes, Kepler y otros.
Tras su graduación en 1665, Isaac Newton se orientó hacia la investigación en Física y Matemáticas, con tal acierto que a los 29 años ya había formulado teorías que señalarían el camino de la ciencia moderna hasta el siglo XX; por entonces ya había obtenido una cátedra en su universidad (1669).
Suele considerarse a Isaac Newton uno de los protagonistas principales de la llamada «Revolución científica» del siglo XVII y, en cualquier caso, el padre de la mecánica moderna. No obstante, siempre fue remiso a dar publicidad a sus descubrimientos, razón por la que muchos de ellos se conocieron con años de retraso.
Newton coincidió con Leibniz en el descubrimiento del cálculo integral, que contribuiría a una profunda renovación de las Matemáticas; también formuló el teorema del binomio (binomio de Newton). Pero sus aportaciones esenciales se produjeron en el terreno de la Física.
Sus primeras investigaciones giraron en torno a la óptica: explicando la composición de la luz blanca como mezcla de los colores del arco iris, Isaac Newton formuló una teoría sobre la naturaleza corpuscular de la luz y diseñó en 1668 el primer telescopio de reflector, del tipo de los que se usan actualmente en la mayoría de los observatorios astronómicos; más tarde recogió su visión de esta materia en la obra Óptica (1703).
También trabajó en otras áreas, como la termodinámica y la acústica; pero su lugar en la historia de la ciencia se lo debe sobre todo a su refundación de la mecánica. En su obra más importante, Principios matemáticos de la filosofía natural (1687), formuló rigurosamente las tres leyes fundamentales del movimiento: la primera ley de Newton o ley de la inercia, según la cual todo cuerpo permanece en reposo o en movimiento rectilíneo uniforme si no actúa sobre él ninguna fuerza; la segunda o principio fundamental de la dinámica, según el cual la aceleración que experimenta un cuerpo es igual a la fuerza ejercida sobre él dividida por su masa; y la tercera, que explica que por cada fuerza o acción ejercida sobre un cuerpo existe una reacción igual de sentido contrario.
De estas tres leyes dedujo una cuarta, que es la más conocida: la ley de la gravedad, que según la leyenda le fue sugerida por la observación de la caída de una manzana del árbol. Descubrió que la fuerza de atracción entre la Tierra y la Luna era directamente proporcional al producto de sus masas e inversamente proporcional al cuadrado de la distancia que las separa, calculándose dicha fuerza mediante el producto de ese cociente por una constante G; al extender ese principio general a todos los cuerpos del Universo lo convirtió en la ley de gravitación universal.
La mayor parte de estas ideas circulaban ya en el ambiente científico de la época; pero Newton les dio el carácter sistemático de una teoría general, capaz de sustentar la concepción científica del Universo durante varios siglos. Hasta que terminó su trabajo científico propiamente dicho (hacia 1693), Newton se dedicó a aplicar sus principios generales a la resolución de problemas concretos, como la predicción de la posición exacta de los cuerpos celestes, convirtiéndose en el mayor astrónomo del siglo. Sobre todos estos temas mantuvo agrios debates con otros científicos (como Halley, Hooker, Leibniz o Flamsteed), en los que encajó mal las críticas y se mostró extremadamente celoso de sus posiciones.
Como profesor de Cambridge, Newton se enfrentó a los abusos de Jacobo II contra la universidad, lo cual le llevó a aceptar un escaño en el Parlamento surgido de la «Gloriosa Revolución» (1689-90). En 1696 el régimen le nombró director de la Casa de la Moneda, buscando en él un administrador inteligente y honrado para poner coto a las falsificaciones. Volvería a representar a su universidad en el Parlamento en 1701. En 1703 fue nombrado presidente de la Royal Society de Londres. Y en 1705 culminó la ascensión de su prestigio al ser nombrado caballero.

NEWTON A PARTE DE LAS MATEMÁTICAS: TEOLOGÍA

Newton fue profundamente religioso toda su vida. Hijo de padres puritanos, dedicó más tiempo al estudio de la Biblia que al de la ciencia. Un análisis de todo lo que escribió Newton revela que de unas 3.600.000 palabras solo 1.000.000 se dedicaron a las ciencias, mientras que unas 1.400.000 tuvieron que ver con teología. Se conoce una lista de cincuenta y ocho pecados que escribió a los 19 años en la cual se puede leer "Amenazar a mi padre y madre Smith con quemarlos y a la casa con ellos".
Newton era arrianista y creía en un único Dios, Dios Padre. En cuanto a los trinitarios, creía que habían cometido un fraude a las Sagradas Escrituras y acusó a la Iglesia Católica Romana de ser la bestia del Apocalipsis. Por estos motivos se entiende por qué eligió firmar sus más secretos manuscritos alquímicos como Jehová Sanctus Unus: Jehová Único Dios. Relacionó sus estudios teológicos con los alquímicos y creía que Moisés había sido un alquimista. Su ideología antitrinitaria le causó problemas, ya que estudiaba en el Trinity College en donde estaba obligado a sostener la doctrina de la Trinidad. Newton viajó a Londres para pedirle al rey Carlos II que lo dispensara de tomar las órdenes sagradas y su solicitud le fue concedida.
Cuando regresó a Cambridge inició su correspondencia con el filósofo John Locke. Newton tuvo la confianza de confesarle sus opiniones acerca de la Trinidad y Locke le incitó a que continuara con sus manuscritos teológicos. Entre sus obras teológicas, algunas de las más conocidas son “An Historical Account of Two Notable Corruption of Scriptures”, “Chronology of Ancient Kingdoms Atended” y “Observations upon the Prophecies”. Newton realizó varios cálculos sobre el "Día del Juicio Final", llegando a la conclusión de que este no sería antes del año 2060.

 GOTTFRIED WILHELM LEIBNIZ

Filósofo y matemático alemán. Su padre, profesor de filosofía moral en la Universidad de Leipzig, falleció cuando Leibniz contaba seis años. Capaz de escribir poemas en latín a los ocho años, a los doce empezó a interesarse por la lógica aristotélica a través del estudio de la filosofía escolástica.
En 1661 ingresó en la universidad de su ciudad natal para estudiar leyes, y dos años después se trasladó a la Universidad de Jena, donde estudió matemáticas con E. Weigel. En 1666, la Universidad de Leipzig rechazó, a causa de su juventud, concederle el título de doctor, que Leibniz obtuvo sin embargo en Altdorf; tras rechazar el ofrecimiento que allí se le hizo de una cátedra, en 1667 entró al servicio del arzobispo elector de Maguncia como diplomático, y en los años siguientes desplegó una intensa actividad en los círculos cortesanos y eclesiásticos.
En 1672 fue enviado a París con la misión de disuadir a Luis XIV de su propósito de invadir Alemania; aunque fracasó en la embajada, Leibniz permaneció cinco años en París, donde desarrolló una fecunda labor intelectual. De esta época datan su invención de una máquina de calcular capaz de realizar las operaciones de multiplicación, división y extracción de raíces cuadradas, así como la elaboración de las bases del cálculo infinitesimal.

En 1676 fue nombrado bibliotecario del duque de Hannover, de quien más adelante sería consejero, además de historiador de la casa ducal. A la muerte de Sofía Carlota (1705), la esposa del duque, con quien Leibniz tuvo amistad, su papel como consejero de príncipes empezó a declinar. Dedicó sus últimos años a su tarea de historiador y a la redacción de sus obras filosóficas más importantes, que se publicaron póstumamente.
Representante por excelencia del racionalismo, Leibniz situó el criterio de verdad del conocimiento en su necesidad intrínseca y no en su adecuación con la realidad; el modelo de esa necesidad lo proporcionan las verdades analíticas de las matemáticas. Junto a estas verdades de razón, existen las verdades de hecho, que son contingentes y no manifiestan por sí mismas su verdad.
El problema de encontrar un fundamento racional para estas últimas lo resolvió afirmando que su contingencia era consecuencia del carácter finito de la mente humana, incapaz de analizarlas por entero en las infinitas determinaciones de los conceptos que en ellas intervienen, ya que cualquier cosa concreta, al estar relacionada con todas las demás siquiera por ser diferente de ellas, posee un conjunto de propiedades infinito.
Frente a la física cartesiana de la extensión, Leibniz defendió una física de la energía, ya que ésta es la que hace posible el movimiento. Los elementos últimos que componen la realidad son las mónadas, puntos inextensos de naturaleza espiritual, con capacidad de percepción y actividad, que, aun siendo simples, poseen múltiples atributos; cada una de ellas recibe su principio activo y cognoscitivo de Dios, quien en el acto de la creación estableció una armonía entre todas las mónadas. Esta armonía preestablecida se manifiesta en la relación causal entre fenómenos, así como en la concordancia entre el pensamiento racional y las leyes que rigen la naturaleza.
Las contribuciones de Leibniz en el campo del cálculo infinitesimal, efectuadas con independencia de los trabajos de Newton, así como en el ámbito del análisis combinatorio, fueron de enorme valor. Introdujo la notación actualmente utilizada en el cálculo diferencial e integral. Los trabajos que inició en su juventud, la búsqueda de un lenguaje perfecto que reformara toda la ciencia y permitiese convertir la lógica en un cálculo, acabaron por desempeñar un papel decisivo en la fundación de la moderna lógica simbólica.

LEIBNIZ A PARTE DE LAS MATEMÁTICAS: LA FILOSOFÍA

El inicio de Leibniz en la filosofía empieza con su discurso sobre la metafísica, el cual elaboró en 1686 como un comentario a una disputa entre Malebranche y Antoine Arnauld. Esto condujo a una extensa y valiosa disputa con Arnauld; el discurso no se publico sino hasta el siglo XIX. En 1695 Leibniz realizó su entrada pública a la filosofía europea con un artículo titulado Nuevo sistema de la naturaleza y comunicación de las sustancias. En el período 1695-1705 elaboró sus Nuevos ensayos sobre el entendimiento humano, un extenso comentario sobre “An Essay Concerning Human Understanding” (1690) de John Locke, pero al enterarse de la muerte de Locke en 1704 perdió el deseo de publicarlo, de modo que los Nuevos ensayos no se publicaron sino hasta 1765. La Monadologie, otra de sus obras importantes, compuesta en 1714 y publicada póstumamente, consta de noventa aforismos.
Leibniz conoció a Spinoza en 1676 y leyó algunos de sus escritos sin publicar, y se sospecha desde entonces que se apropió de algunas de sus ideas. A diferencia de Descartes, Leibniz y Spinoza tenían una educación filosófica rigurosa. La disposición escolástica y aristotélica de su mente revela la fuerte influencia de uno de sus profesores en Leipzig, Jakob Thomasius, quien supervisó además su tesis de grado. Leibniz también leyó vorazmente a Francisco Suárez, un jesuita español, respetado incluso en las universidades luteranas. Tenía un profundo interés por los nuevos métodos y conclusiones de Descartes, Huygens, Newton y Boyle, pero observaba sus trabajos desde una perspectiva bastante influida por las nociones escolásticas. Sin embargo, sigue siendo notable el que sus métodos y preocupaciones anticipan con frecuencia la lógica y la filosofía analítica y lingüística del siglo XX.

CALCULO INFINITESIMAL

La invención del cálculo infinitesimal es atribuida tanto a Leibniz como a Newton.
De acuerdo con los cuadernos de Leibniz, el 11 de noviembre de 1675 tuvo lugar un acontecimiento fundamental, ese día empleó por primera vez el cálculo integral para encontrar el área bajo la curva de una función y=f(x). Leibniz introdujo varias notaciones usadas en la actualidad, tal como, por ejemplo, el signo "integral" ∫, que representa una S alargada, derivado del latín "summa", y la letra "d" para referirse a los "diferenciales", del latín "differentia". 

Esta ingeniosa y sugerente notación para el cálculo es probablemente su legado matemático más perdurable. Leibniz no publicó nada acerca de su cálculo hasta 1684. La regla del producto del cálculo diferencial es aún denominada "regla de Leibniz para la derivación de un producto". Además, el teorema que dice cuándo y cómo diferenciar bajo el símbolo integral, se llama la "regla de Leibniz para la derivación de una integral".
Desde 1711 hasta su muerte, la vida de Leibniz estuvo emponzoñada con una larga disputa con John Keill, Newton y otros sobre si había inventado el cálculo independientemente de Newton, o si meramente había inventado otra notación para las ideas de Newton. Leibniz pasó entonces el resto de su vida tratando de demostrar que no había plagiado las ideas de Newton.
Por otra parte, Newton abordó el desarrollo del cálculo a partir de la geometría analítica desarrollando un enfoque geométrico y analítico de las derivadas matemáticas aplicadas sobre curvas definidas a través de ecuaciones. Newton también buscaba cómo cuadrar distintas curvas, y la relación entre la cuadratura y la teoría de tangentes. Después de los estudios de Roberval, Newton se percató de que el método de tangentes podía utilizarse para obtener las velocidades instantáneas de una trayectoria conocida. En sus primeras investigaciones Newton lidia únicamente con problemas geométricos, como encontrar tangentes, curvaturas y áreas utilizando como base matemática la geometría analítica de Descartes. No obstante, con el afán de separar su teoría de la de Descartes, comenzó a trabajar únicamente con las ecuaciones y sus variables sin necesidad de recurrir al sistema cartesiano.
Actualmente se emplea la notación del cálculo creada por Leibniz, no la de Newton.